ENVIRONMENTAL PRODUCT DECLARATION

ISO 14025 ISO 21930 EN 15804 Owner of the declaration Program holder Publisher Declaration number Issue date Valid to

AS ROCKWOOL The Norwegian EPD Foundation The Norwegian EPD Foundation 00131E rev1 25.10.2013 25.10.2018

ROCKWOOL® isolering

Product

AS ROCKWOOL Manufacturer

General information

ROCKWOOL® isolering

Product

Program holder:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo Phone: +4723088000 e-mail: post@epd-norge.no

Declaration number: 00131E rev1

This declaration is based on Product Category Rules:

CEN Standard EN 15804 serve as core PCR Product Group Insulation materials, NPCR 012rev.

Declared unit:

1 m^2 of 37mm thick stone wool insulation product with a density of 29 kg/m 3 and a thermal resistance of R=1 m^2 K/W.

Declared unit with option:

Functional unit:

The environmental product declaration has been worked out by:

Rasmus Nielsen and Anders Schmidt, Ph.D., FORCE Technology, Lyngby, Denmark

Verification:

Independent verification of data and other environmental information has been carried out in accordance with ISO14025, 8.1.3.

externally

1

internally

President Joep Meijer (Independent verifier approved by EPD Norway)

Declared unit:

1 m² of 37 mm thick stone wool insulation product with a density of 29 kg/m³ and a thermal resistance of R=1 m² K/W.

Key environmental indicators	Unit	Cradle to gate A1 - A3	Transport Production site - central warehouse Norway
Global warming	kg CO ₂ -eqv	1,27	1,19*10 ⁻²
Energy use	MJ	13,8	0,17
Dangerous substances	*		

* The product contains no substanses from the REACH Candidate list or the Norwegian priority list

AS ROCKWOOL

Manufacturer

Owner of the declaration:

AS ROCKWOOL Contact person: Torkel Wæringsaasen Phone: 00 47 22 02 40 00 e-mail: <u>Torkel.Weringsaasen@rockwool.com</u>

Place of production:

Vamdrup and Doense, Denmark Trondheim and Moss, Norway

Management system:

ISO 9001, ISO14001, EN13.162, EN13.172, EN14303

Org. No:

923828583

Issue date: 25.10.2013

Valid to:

25.10.2018

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Succe Fossdal Dr. ing. Sverre Fossdal

(Chairman of the Verification Group of EPD-Norway)

Year of study:

2013

Approved according to ISO14025, 8.1.4

Product

Product description:

Stone wool insulation from ROCKWOOL is a firesafe* material for insulation against heat, cold, fire, vibrations and noise. The product is wrapped with PE-foil and placed on wooden pallets for further distribution.

Stone wool insulation from ROCKWOOL is a firesafe* material for insulation against heat, cold, fire, vibrations and noise. The product is wrapped with PE-foil and placed on wooden pallets for further distribution.

Stone wool insulation from ROCKWOOL for the Scandinavian market is supplied by two production sites in Norway (Moss and Trondheim) as well as two sites in Denmark (Doense and Vamdrup), each with two lines. The properties of the ROCKWOOL products from the different production sites are identical. The EPD is based on LCA inventory data from the 4 plants. The reference flow is a weighted average and is calculated using the following distribution of production capacity (2011) on the four production sites: Vamdrup 30,6%, Doense 35,7%, Trondheim 11,9%, Moss 21,7%.

* A1 when tested according to EN 13501-1 (Euroclasses)

Description of manufacturing processes:

The furnace used in all four production sites is an oven with coke as the main energy source. The virgin stone raw materials used at all sites are mainly basalt, diabase and dolomite. The Danish sites also use various secondary materials, including internal wool waste, which is mixed with cement into briquettes. The mineral raw materials are melted and spun into fibers at a temperature of about 1500°C. A synthetic binder and a water-repellant agent are added, whereafter the final curing (polymerisation) and forming takes place at a temperature of about 230°C. Finally the product is cut into the desired dimensions and packed in PE foil.

Technical	data:
-----------	-------

Scaling factors for ROCKWOOL Insulation materials in this EPD can be seen in the table below. The scaling factors show how much to multiply the environmental burdens by in order to obtain a thermal resistance of R=1 m^2 K/W with other ROCKWOOL products. The R-values used for scaling gives a very good indication of the amount of materials needed to achieve the desired insulation effect of other product types, but is not an exact measure. Stone wool insulation products marked with an asterix (*) in the table are sold with extra features for special applications e.g. with wire netting, a bitumen membrane or aluminium foil. The extra features are not covered by this LCA.

The products covered by the EPD are produced at all production lines in a full year. The variation between production lines has not been determined.

Market:

Scandinavia

Reference service life:

The service life of the product is >> 60 years and built into a construction and will last the construction lifetime.

Product specification

Scaling

Material input per functional unit

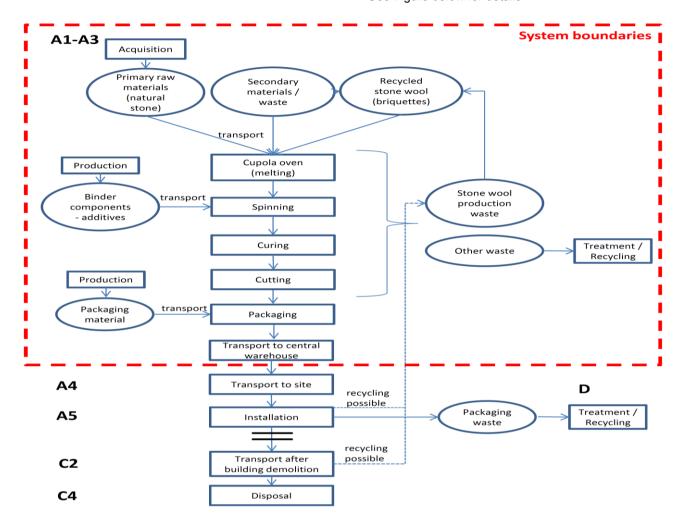
Material	kg	% of total
Stones	0,902	67,1
Secondary resources mostly slag	0,251	18,7
Cement	0,087	6,46
Formaldehyde (37%)	0,052	3,89
Urea (46%)	0,021	1,57
Phenol	0,016	1,21

Products	Scaling Factor
B-plate	
Bjälklagsskiva med vindskydd*	
Byggrulle med vindskydd*	1.0
A-Murbatts	
lsolerasjälv	
Stålregelskiva 40	1.1
Flexibatts 35	1.1
Flexibatts	
Flexi A-plate	
Takstolplate	
Takstolsskiva med vindskydd*	
I-plate A	1.2
Stålstenderplate	
Roxremsa	
A-Rullebatts	
BD-60 FlexiBatts	
Lamelmatte*	1.3
Murplate	
Brannplate 50	
Skalmursskiva	1.4
SuperFlexiBatts	
Super A-Murbatts	
Stålregelskiva 37	1.6
Lydplate	
Rockvegg	1.7
Rockorbit	1.7
RockOrbit	
Flex Systemplate	
FlexExtrem 33	2.0
REDAirFLEXsystem	

Products	Scaling
Froducts	Factor
Super VentiBatts	
Hardrock Elementbatts	2.1
RockProfil skiva	
A-Pladebatts 10	2.3
Plåtunderlagsskiva 80	
Betonelementbatts 35	2.6
Västkustskiva	2.0
Trådvævsmåtte 80 *	
Betonelementplate	
Conlit Brannmatte*	2.8
Alu Brandmatte 80*	
Toprock Lamell	2.9
Underlag Energy	3.4
Trådvævsmåtte 105*	3.4
Brandbatts	
Hardrock Energy	3.5
Stålunderlag Energy	
Drensplate	
RockTorv	
Støpeplate Pluss	
Hardrock Fasadeplate	
Fallunderlagsplate	3.6
Lydunderlagsplate	
Ljudunderlagsskiva	
Underlagsskiva stål & betong	
Facadebatts	
Gulvrenoveringsplade	3.7
Terrænbatts Erhverv	5.7
Universal rørskål *	3.8
Hardrock Energy	4.5

Products	Scaling Factor
Markplate	
Tungplate 150	
Marksskiva Industri	4.7
Stegljudsskiva	
Väggboard	
Conlit 150	5.7
Trinnlytplate	6.0
Renoveringsboard	0.0
TF-plate	
TF-Takkile	
Hardrock Energy Takfall	
TF Renneplate	
Fallränna TF	
Hardrock Takfall 1:40/60	62
Hardrock kilskiva 1:40/60	0.2
Ränndalskil 180	
Takboard]
Takkil]
TopRock Takboard]
TF-Plade	7
Conlit 300	11.2

*: Products marked with an * are specialty products with extra features like wire netting and aluminium foil. The extra features are not included in the EPD-calculations


LCA: Calculation rules

Declared unit:

1 m^2 of 37 mm thick stone wool insulation product with a density of 29 kg/m 3 and a thermal resistance of R=1 m^2 K/W.

System boundary:

The overall system boundaries include extraction and transportation of raw materials as well as all manufacturing processes (cradle-to-gate). Transport from all factories to a central storage in Norway has been included. See Figure below for details

Data quality:

High quality data from GaBi 6 and ecoinvent have been used for acquisition of raw materials and transportation. Legally required information has been used for manufacturing processes at ROCKWOOL. The age of the oldest dataset in the database is 13 years and the vast majority of datasets are under 5 years old. The data collected from the sites are from 2011. Accordingly, the overall quality is judged to be good to very good.

Cut-off criteria:

All inputs of raw materials and energy have been included. Please note that products with special features e.g. wire netting, bitumen membrane or alufoil are not included in the EPD. Please consult ROCKWOOL AS for more information.

Allocation:

Allocation has been made according to the provisions in EN 15804. Impacts from recycled material have been allocated to the primary product, except transportation. ROCKWOOL supply district heating in Denmark. Respectively 7,3% and 9,4% of the energy consumed in the two production sites in Denmark have been allocated to district heating, using the energy content as the allocation key. The emissions associated with energy production have been allocated in the same way. A sensitivity analysis of the results using a different allocation key, such as the economic value, or substitution approach has not been performed.

LCA: Scenarios and additional technical information

The following information describe the scenaries in the different modules of the EPD.

Transport from production site to central warehouse in Norway

Туре	Capacity utilisation	Gross density of	Type of	Distance km	Fuel/Energy	Value
		products	vehicle		consumption	(l/t)
Truck*	30		****	127	1,7*10 ⁻² l/tkm	2,16
Truck**	30		****	50	1,7*10 ⁻² l/tkm	0,860
Boat***	48		****	149	4,6*10 ⁻³ l/tkm	0,685

* Transport by Truck (weighted average). From Danish production sites to Moss in Norway

** Transport byTruck. From Moss and Trondheim to central warehouse in Norway

*** Transport by Boat (weighted average). From Denmark to Norway (Frederikshavn terminal to Oslo)

**** Dataset from GaBi with a Euro class 3 truck-trailer with a payload of 22 tons.

***** Dataset from GaBi with a Bulk commodity carrier with 1,500-20,000 dwt. payload capacity and light fuel oil driven.

LCA: Results

Syste	System boudaries (X=included, MND=module not declared, MNR=module not relevant)															
Pro	duct st	age		truction tion stage		Use stage End of life stage								Beyond the system boundaries		
Raw materials	Transport	Manufacturing	Transport	Construction installation stage	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	В5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environment	Environmental impact											
Parameter	A1 - A3											
GWP	1,27											
ODP	1,48*10 ⁻⁹											
POCP	6,92*10 ⁻⁴											
AP	8,96*10 ⁻³											
EP	8.87*10 ⁻⁴											
ADPM	2,52*10 ⁻⁷											
ADPE	12,5											

GWP Global warming potential (kg CO₂-eqv.); **ODP** Depletion potential of the stratospheric ozone layer (kg CFC11-eqv.); **POCP** Formation potential of tropospheric photochemical oxidants (kg C₂H₄-eqv.); **AP** Acidification potential of land and water (kg SO₂eqv.); **EP** Eutrophication potential (kg PO₄-³-eqv.); **ADPM** Abiotic depletion potential for non fossil resources (kg Sb -eqv.); **ADPE** Abiotic depletion potential for fossil resources (MJ)

Reading example: $9,0*10^{-3} = 0,009$

D -			
ке	sour	ce i	Jse

TCSOULCE US					
Parameter	A1 - A3				
RPEE	0,543				
RPEM	0,906				
TPE	1,45				
NRPE	12,97				
NRPM	0,00				
TRPE	12,97				
SM	0,281				
RSF	3,89*10 ⁻²				
NRSF	0,202				
W	3,39*10 ⁻³				

RPEE Renewable primary energy resources used as energy carrier (MJ); **RPEM** Renewable primary energy resources used as raw materials (MJ); **TPE** Total use of renewable primary energy resources (MJ); **NRPE** Non renewable primary energy resources used as energy carrier (MJ); **NRPM** Non renewable primary energy resources used as materials (MJ); **TRPE** Total use of non renewable primary energy resources used as materials (MJ); **TRPE** Total use of non renewable primary energy resources used as materials (MJ); **TRPE** Total use of non renewable primary energy resources used as materials (MJ); **TRPE** Total use of non renewable primary energy resources used as materials (MJ); **TRPE** Total use of non renewable primary energy resources (MJ); **W** Use of secondary materials (kg); **RSF** Use of renewable secondary fuels (MJ); **NRSF** Use of non renewable secondary fuels (MJ); **W** Use of net fresh water (m³)

End of life -	End of life - Waste											
Parameter	A1 - A3											
HW	7,22*10 ⁻³											
NHW	0,226											
RW	n/a											

HW Hazardous waste disposed (kg); NHW Non hazardous waste disposed (kg), RW Radioactive waste disposed (kg)

End of life - Output flow									
Parameter	A1 - A3								
CR	0								
MR	2,63*10 ⁻²								
MER EEE ETE	8,29*10 ⁻⁴								
EEE	0								
ETE	0								

CR Components for reuse (kg); **MR** Materials for recycling (kg); **MER** Materials for energy recovery (kg); **EEE** Exported electric energy (MJ); **ETE** Exported thermal energy (MJ)

Reading example: $9,0*10^{-3} = 0,009$

Specific Norwegian requirements

Electricity

Electricity used in the manufacturing processes has been accounted for using the process Danish Electricity grid mix (1kV-60kV) from GaBi6 (reference year 2009).

Dangerous substances

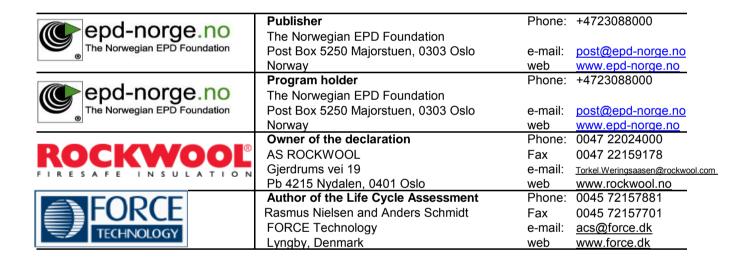
None of the following substances have been added to the product: Substances on the REACH Candidate list of substances of very high concern (of 25.10.2013) substances on the Norwegian Priority list (pr.25.10.2013) and substances that lead to the product being classified as hazardous waste. The chemical content of the product complies with regulatory levels as given in the Norwegian Product Regulations.

Transport

Transport from production site to central warehouse in Norway is 326 km

Indoor environment

In general, ROCKWOOL products have been assessed using the Finnish M1 emission classes for building material. In total 32 specific ROCKWOOL products have been tested representing a wide range of products. To be granted the M1 quality label, an emission test (incl. ammonia, formaldehyde, and carcinogens) and an odour test has to be performed. The time period of testing is 28 days. Criteria: TVOC (Minimum of 70% of the compounds shall be identified): <0,2 mg/m2h, Formaldehyde (HCOH): < 0,05 mg/m2h, Ammonia (NH3): <0,03 mg/m2h, Carcinogenic compounds (belonging to category 1 of IARC monographs): <0,005 m,/m2h, Odour (dissatisfaction with odour shall be below 15%): No Odour. The M1 is the highest achievable best rank in the classification system.


(https www.rakennustieto.fi/index/english/emissionclassificationofbuildingmaterials.html)

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography	
ISO 14025:2006	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
Schmidt A, Nielsen. R, (2013).	LCA of stone wool insulation on the Scandinavian market from ROCKWOOL, Project report, FORCE Technology. 2013
PCR 2012	Product-Category Rules. NPCR 12 rev. Insulation materials, epd-norge.no, 2012

